|
| | OdGePlane () |
| |
| | OdGePlane (const OdGePlane &plane) |
| |
| | OdGePlane (const OdGePoint3d &origin, const OdGeVector3d &normal) |
| |
| | OdGePlane (const OdGePoint3d &uPnt, const OdGePoint3d &origin, const OdGePoint3d &vPnt) |
| |
| | OdGePlane (const OdGePoint3d &origin, const OdGeVector3d &uAxis, const OdGeVector3d &vAxis) |
| |
| | OdGePlane (double a, double b, double c, double d) |
| |
| | TD_USING (OdGePlanarEnt::intersectWith) |
| |
| bool | intersectWith (const OdGePlane &plane, OdGeLine3d &intLine, const OdGeTol &tol=OdGeContext::gTol) const |
| |
| bool | intersectWith (const OdGeBoundedPlane &plane, OdGeLineSeg3d &intLine, const OdGeTol &tol=OdGeContext::gTol) const |
| |
| double | signedDistanceTo (const OdGePoint3d &point) const |
| |
| OdGePlane & | set (const OdGePoint3d &point, const OdGeVector3d &normal) |
| |
| OdGePlane & | set (const OdGePoint3d &uPnt, const OdGePoint3d &origin, const OdGePoint3d &vPnt) |
| |
| OdGePlane & | set (double a, double b, double c, double d) |
| |
| OdGePlane & | set (const OdGePoint3d &origin, const OdGeVector3d &uAxis, const OdGeVector3d &vAxis) |
| |
| OdGePlane & | operator= (const OdGePlane &plane) |
| |
| bool | intersectWith (const OdGeLinearEnt3d &line, OdGePoint3d &point, const OdGeTol &tol=OdGeContext::gTol) const |
| |
| OdGePoint3d | closestPointToLinearEnt (const OdGeLinearEnt3d &line, OdGePoint3d &pointOnLine, const OdGeTol &tol=OdGeContext::gTol) const |
| |
| OdGePoint3d | closestPointToPlanarEnt (const OdGePlanarEnt &plane, OdGePoint3d &pointOnOtherPlane, const OdGeTol &tol=OdGeContext::gTol) const |
| |
| bool | isParallelTo (const OdGeLinearEnt3d &line, const OdGeTol &tol=OdGeContext::gTol) const |
| |
| bool | isParallelTo (const OdGePlanarEnt &plane, const OdGeTol &tol=OdGeContext::gTol) const |
| |
| bool | isPerpendicularTo (const OdGeLinearEnt3d &line, const OdGeTol &tol=OdGeContext::gTol) const |
| |
| bool | isPerpendicularTo (const OdGePlanarEnt &plane, const OdGeTol &tol=OdGeContext::gTol) const |
| |
| bool | isCoplanarTo (const OdGePlanarEnt &plane, const OdGeTol &tol=OdGeContext::gTol) const |
| |
| void | get (OdGePoint3d &origin, OdGeVector3d &uAxis, OdGeVector3d &vAxis) const |
| |
| void | get (OdGePoint3d &uPnt, OdGePoint3d &origin, OdGePoint3d &vPnt) const |
| |
| OdGePoint3d | pointOnPlane () const |
| |
| OdGeVector3d | normal () const |
| |
| void | getCoefficients (double &a, double &b, double &c, double &d) const |
| |
| void | getCoordSystem (OdGePoint3d &origin, OdGeVector3d &axis1, OdGeVector3d &axis2) const |
| |
| OdGePlanarEnt & | operator= (const OdGePlanarEnt &plane) |
| |
| | TD_USING (OdGeSurface::project) |
| |
| bool | project (const OdGePoint3d &p, const OdGeVector3d &unitDir, OdGePoint3d &projP, const OdGeTol &tol=OdGeContext::gTol) const |
| |
| OdGePoint2d | paramOf (const OdGePoint3d &point, const OdGeTol &tol=OdGeContext::gTol) const |
| |
| | TD_USING (OdGeEntity3d::isOn) |
| |
| bool | isOn (const OdGePoint3d &point, OdGePoint2d ¶mPoint, const OdGeTol &tol=OdGeContext::gTol) const |
| |
| OdGePoint3d | closestPointTo (const OdGePoint3d &point, const OdGeTol &tol=OdGeContext::gTol) const |
| |
| void | getClosestPointTo (const OdGePoint3d &point, OdGePointOnSurface &pntOnSurface, const OdGeTol &tol=OdGeContext::gTol) const |
| |
| double | distanceTo (const OdGePoint3d &point, const OdGeTol &tol=OdGeContext::gTol) const |
| |
| bool | isNormalReversed () const |
| |
| OdGeSurface & | reverseNormal () |
| |
| void | getEnvelope (OdGeInterval &intrvlU, OdGeInterval &intrvlV) const |
| |
| bool | isClosedInU (const OdGeTol &tol=OdGeContext::gTol) const |
| |
| bool | isClosedInV (const OdGeTol &tol=OdGeContext::gTol) const |
| |
| OdGePoint3d | evalPoint (const OdGePoint2d ¶m) const |
| |
| OdGePoint3d | evalPoint (const OdGePoint2d ¶m, int numDeriv, OdGeVector3dArray &derivatives) const |
| |
| OdGePoint3d | evalPoint (const OdGePoint2d ¶m, int numDeriv, OdGeVector3dArray &derivatives, OdGeVector3d &normal) const |
| |
| OdGeSurface & | operator= (const OdGeSurface &surf) |
| |
| bool | project (const OdGePoint3d &p, OdGePoint3d &projP, const OdGeTol &tol=OdGeContext::gTol) const |
| |
| bool | getReparameterization (bool &swapUV, double &uCoeffA, double &vCoeffA, double &uCoeffB, double &vCoeffB) const |
| |
| void | setReparameterization (bool swapUV=false, double uCoeffA=1., double vCoeffA=1., double uCoeffB=0., double vCoeffB=0.) |
| |
| void | getImplicitEnvelope (OdGeInterval &implicitIntrvlU, OdGeInterval &implicitIntrvlV) const |
| |
| bool | setEnvelope (const OdGeInterval &realIntrvlU, const OdGeInterval &realIntrvlV) |
| |
| | ODRX_HEAP_OPERATORS () |
| |
| | ~OdGeEntity3d () |
| |
| bool | isKindOf (OdGe::EntityId entType) const |
| |
| OdGe::EntityId | type () const |
| |
| OdGeEntity3d * | copy () const |
| |
| OdGeEntity3d & | operator= (const OdGeEntity3d &entity) |
| |
| bool | operator== (const OdGeEntity3d &entity) const |
| |
| bool | operator!= (const OdGeEntity3d &entity) const |
| |
| bool | isEqualTo (const OdGeEntity3d &object, const OdGeTol &tol=OdGeContext::gTol) const |
| |
| OdGeEntity3d & | transformBy (const OdGeMatrix3d &xfm) |
| |
| OdGeEntity3d & | translateBy (const OdGeVector3d &translateVec) |
| |
| OdGeEntity3d & | rotateBy (double angle, const OdGeVector3d &vect, const OdGePoint3d &basePoint=OdGePoint3d::kOrigin) |
| |
| OdGeEntity3d & | mirror (const OdGePlane &plane) |
| |
| OdGeEntity3d & | scaleBy (double scaleFactor, const OdGePoint3d &basePoint=OdGePoint3d::kOrigin) |
| |
| bool | isOn (const OdGePoint3d &point, const OdGeTol &tol=OdGeContext::gTol) const |
| |
This class represents infinite planes in 3D space.
Corresponding C++ library: TD_Ge
<group OdGe_Classes>
- See also
- <link ge_OdGePlane.html, Working with Planes>
Definition at line 44 of file GePlane.h.
Sets the parameters for this plane according to the arguments.
- Parameters
-
| origin | [in] Origin of plane. |
| uAxis | [in] The U-axis. |
| vAxis | [in] The V-axis. |
- Returns
- Returns a reference to this plane.
The orthonormal canonical coordinate system associated with a plane defined follows
@untitled table origin Origin of plane. originOfPlanarEntiity
axis1 A unit vector in the plane. uAxis.normal()
axis2 A unit vector perpendicular to the plane. uAxis.crossProduct(vAxis).normal()
The plane equation for this plane is as follows
a * X + b * Y + c * Z + d = 0
Sets the parameters for this plane according to the arguments.
- Parameters
-
| normal | [in] The normal to the plane. |
- Returns
- Returns a reference to this plane.
The orthonormal canonical coordinate system associated with a plane defined follows
@untitled table origin Origin of plane. originOfPlanarEntiity
axis1 A unit vector in the plane. uAxis.normal()
axis2 A unit vector perpendicular to the plane. uAxis.crossProduct(vAxis).normal()
The plane equation for this plane is as follows
a * X + b * Y + c * Z + d = 0
Sets the parameters for this plane according to the arguments.
- Parameters
-
| origin | [in] Origin of plane. |
| uPnt | [in] A point at the end of the U-axis. |
| vPnt | [in] A point at the end of the V-axis. |
- Returns
- Returns a reference to this plane.
The orthonormal canonical coordinate system associated with a plane defined follows
@untitled table origin Origin of plane. originOfPlanarEntiity
axis1 A unit vector in the plane. uAxis.normal()
axis2 A unit vector perpendicular to the plane. uAxis.crossProduct(vAxis).normal()
The plane equation for this plane is as follows
a * X + b * Y + c * Z + d = 0
| OdGePlane& OdGePlane::set |
( |
double |
a, |
|
|
double |
b, |
|
|
double |
c, |
|
|
double |
d |
|
) |
| |
Sets the parameters for this plane according to the arguments.
- Parameters
-
| a | [in] Coefficient a. |
| b | [in] Coefficient b. |
| c | [in] Coefficient c. |
| d | [in] Coefficient d. |
- Returns
- Returns a reference to this plane.
The orthonormal canonical coordinate system associated with a plane defined follows
@untitled table origin Origin of plane. originOfPlanarEntiity
axis1 A unit vector in the plane. uAxis.normal()
axis2 A unit vector perpendicular to the plane. uAxis.crossProduct(vAxis).normal()
The plane equation for this plane is as follows
a * X + b * Y + c * Z + d = 0